Publications

At ISU

  1. Mukta, S.; Gundlach-Graham, A.*, Ion chromatography – nitrogen-sustained microwave inductively coupled atmospheric pressure plasma – mass spectrometry (IC-MICAP-MS) for arsenic speciation analysis in rice. J. Anal. At. Spectrom. 2024. http://doi.org/10.1039/D3JA00400G
  2. Gundlach-Graham, A.;* Harycki, S.; Szakas, S. E.; Taylor, T. L.; Karkee, H.; Buckman, R. L.; Mukta, S.; Hu, R.; Lee, W., Introducing “time-of-flight single particle investigator” (TOF-SPI): a tool for quantitative spICP-TOFMS data analysis. J. Anal. At. Spectrom. 2024. http://doi.org/10.1039/D3JA00421J
  3. Vonderach, T.; Gundlach-Graham, A.; Günther, D., Determination of carbon in microplastics and single cells by total consumption microdroplet ICP-TOFMS. Anal. Bioanal. Chem. 2023. https://doi.org/10.1007/s00216-023-05064-0
  4. Szakas, S.; Gundlach-Graham, A.*, Exploring particle populations of common inorganic gunshot residue interferences through single particle inductively coupled plasma time-of-flight mass spectrometry. Talanta 2023, 268, 125368. https://doi.org/10.1016/j.talanta.2023.125368
  5. Harycki, S.; Gundlach-Graham, A.*, Single-Particle ICP-TOFMS with Online Microdroplet Calibration: A Versatile Approach for Accurate Quantification of Nanoparticles, Submicron Particles, and Microplastics in Seawater. Anal. Chem. 2023, 95 (41), 15318-15324. (https://doi.org/10.1021/acs.analchem.3c02785)
  6. Karkee, H.; Gundlach-Graham, A.*, Characterization and Quantification of Natural and Anthropogenic Titanium-Containing Particles Using Single-Particle ICP-TOFMS. Environ. Sci. Technol. 2023, 57 (37), 14058-14070.(https:///doi.org/10.1021/acs.est.3c04473)
  7. Kong, S.; Singh, P.; Akopov, G.; Jing, D.; Davis, R.; Perez-Aguilar, J.; Hong, J.; Lee, S. J.; Viswanathan, G.; Soto, E.; Azhan, M.; Fernandes, T.; Harycki, S.; Gundlach-Graham, A.; Kolen’ko, Y. V.; Johnson, D. D.; Kovnir, K.*, Probing of the Noninnocent Role of P in Transition-Metal Phosphide Hydrogen Evolution Reaction Electrocatalysts via Replacement with Electropositive Si. Chemistry of Materials 2023, 35 (14), 5300-5310 (https://doi.org/10.1021/acs.chemmater.3c00460)
  8. Hendriks, L.; Bruenjes, R.; Taskula, S.; Kocic, J.; Hattendorf, B.; Bland, G.; Lowry, G.; Bolea-Fernandez, E.; Vanhaecke, F.; Wang, J.; Baalousha, M.; von der Au, M.; Meermann, B.; Holbrook, T. R.; Wagner, S.; Harycki, S.; Gundlach-Graham, A.; von der Kammer, F., Results of an interlaboratory comparison for characterization of Platinum nanoparticles using single-particle ICP-TOFMS. Nanoscale 2023. (https://doi.org/10.1039/d3nr00435j)
  9. Buckman, R. L.; Gundlach-Graham, A.*, Machine learning analysis to classify nanoparticles from noisy spICP-TOFMS data. J. Anal. At. Spectrom. 2023. (https://doi.org/10.1039/D3JA00081H)
  10. Gundlach-Graham, A.*; Lancaster, R., Mass-Dependent Critical Value Expressions for Particle Finding in Single-Particle ICP-TOFMS. Anal. Chem. 2023. (https://doi.org/10.1021/acs.analchem.2c05243)
  11. Wen, X.; Ou, L.; Cutshaw, G.; Uthaman, S.; Ou, Y.-C.; Zhu, T.; Szakas, S.; Carney, B.; Houghton, J.; Gundlach-Graham, A.; Rafat, M.; Yang, K.; Bardhan, R., Physicochemical Properties and Route of Systemic Delivery Control the In Vivo Dynamics and Breakdown of Radiolabeled Gold Nanostars. Small 2023, 2204293. (https://doi.org/10.1002/smll.202204293)
  12. Taylor, T. L.; Gundlach-Graham, A.*, Integration of capillary vibrating sharp-edge spray ionization as a nebulization device for ICP-MS. J. Anal. At. Spectrom. 202338 (3), 721-729.  (http://dx.doi.org/10.1039/D2JA00384H)
  13. Szakas, S. E.; Menking-Hoggatt, K.; Trejos, T.; Gundlach-Graham, A.*, Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Appl Spectrosc 2023, 77 (8), 873-884. (https://doi.org/10.1177/00037028221142624)
  14. Harycki, S.; Gundlach-Graham, A.*, Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses. J. Anal. At. Spectrom. 202238, 111-120. (http://dx.doi.org/10.1039/D2JA00295G
  15. Mehrabi, K.; Dengler, M.; Nilsson, I.; Baumgartner, M.; Mora, C. A.; Günther, D.; Gundlach-Graham, A.*, Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal. Bioanal. Chem. 2022, 414 (23), 6743-6751. (https://doi.org/10.1007/s00216-022-04234-w)
  16. Goodman, A.; Gundlach-Graham, A.*; Bevers, S.; Ranville, J. F., Characterization of Nano-scale Mineral Dust Aerosols in Snow by Single Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Sci.: Nano 20229 (8), 2638-2652.
    (http://dx.doi.org/10.1039/D2EN00277A)
  17. Harycki, S.; Gundlach-Graham, A.*, Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Anal. Bioanal. Chem. 2022414 (25), 7543-7551. (https://doi.org/10.1007/s00216-022-04115-2
  18. Szakas, S. E.; Lancaster, R.; Kaegi, R.; Gundlach-Graham, A.*, Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environ. Sci.: Nano 2022. (http://dx.doi.org/10.1039/D1EN01039E)
  19. Sarkar, A.; Viswanathan, G.; Yox, P.; Harycki, S.; Cerasoli, F. T.; Wang, J.; Perras, F. A.; Gundlach-Graham, A.; Donadio, D.; Kovnir, K., Evolution of structure and transport properties of the Ba8Cu16P30 clathrate-I framework with the introduction of Ga. Appl. Phys. Lett. 2022, 120 (19), 191901. (https://doi.org/10.1063/5.0093646)
  20. Mehrabi, K.*; Kaegi, R.; Günther, D.; Gundlach-Graham, A., Quantification and Clustering of Inorganic Nanoparticles in Wastewater Treatment Plants across Switzerland. Chimia 2021, 75 (7-8), 642-646.(https://doi.org/10.2533/chimia.2021.642)
  21. Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A.*, Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Environ. Sci.: Nano 2021. (https://doi.org/10.1039/D0EN01066A)
  22. Gundlach-Graham, A.*, Multiplexed and multi-metal single-particle characterization with ICP-TOFMS. In Comprehensive Analytical Chemistry, Elsevier: 2021. (https://doi.org/10.1016/bs.coac.2021.01.008)
  23. Gundlach-Graham, A.* and K. Mehrabi, Monodisperse microdroplets: a tool that advances single-particle ICP-MS measurements, J. Anal. At. Spectrom.2020, 35, 1727-1739. (http://dx.doi.org/10.1039/D0JA00213E)

Prior to ISU

  1. Garofalo, P. S.; Scarsi, M.; Gundlach-Graham, A.; Schwarz, G.; Günther, D., Feedbacks between fast brittle faulting, hydrothermal fluid flow, and metal transport within carbonated ultramafics (Ligurian Western Alps, Italy). Mineralium Deposita 2022. (https://doi.org/10.1007/s00126-022-01142-y)
  2. Schwarz, G.*; Picotti, V.; Bleiner, D.; Gundlach-Graham, A., Incorporating a Student-Centered Approach with Collaborative Learning into Methods in Quantitative Element Analysis, J. Chem. Educ.2020, 97 (10), 3617-3623. (http://dx.doi.org/10.1021/acs.jchemed.0c00052)
  3. Mehrabi, K; Günther, D.; Gundlach-Graham, A.*, Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices Environmental Science: Nano, 2019, 6, 3349-3358. (http://dx.doi.org/ 10.1039/C9EN00620F)
  4. Hendriks, L; Gundlach-Graham,  A.* and D. Günther, Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. Journal of Analytical Atomic Spectrometry2019, 34, 1900-1909. (http://dx.doi.org/10.1039/C9JA00186G)
  5. Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.*; Koch, J.; Grass, R. N.; Jakubowski, N.; Günther, D.*, Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing. Journal of Analytical Atomic Spectrometry 2019. (http://dx.doi.org/10.1039/C8JA00397A
  6. Burger, M.; Hendriks, L.; Kaeslin, J.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D., Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology – insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry 2019, 34 (1), 135-146. (http://dx.doi.org/10.1039/C8JA00275D)
  7. Schild, M.; Gundlach-Graham, A.; Menon, A.; Jevtic, J.; Pikelja, V.; Tanner, M.; Hattendorf, B.; Günther, D., Replacing the Argon ICP: Nitrogen Microwave Inductively Coupled Atmospheric-Pressure Plasma (MICAP) for Mass Spectrometry. Analytical Chemistry 2018. (http://doi.org/10.1021/acs.analchem.8b03251)
  8. Gundlach-Graham, A.*; Hendriks, L.; Mehrabi, K.; Günther, D., Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection. Analytical Chemistry 201890 (20), 11847-11855 (https://doi.org/10.1021/acs.analchem.8b01551)
  9. Gundlach-Graham, A.*; Garofalo, P. S.*; Schwarz, G.; Redi, D.; Günther, D., High-resolution, Quantitative Element Imaging of an Upper Crust, Low-angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time-of-Flight Mass Spectrometry. Geostandards and Geoanalytical Research. 201842 (4), 559-574. (https://doi.org/10.1111/ggr.12233)
  10. Hendriks, L.; Gundlach-Graham, A.*; Günther, D., Analysis of Inorganic Nanoparticles by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry CHIMIA International Journal for Chemistry. 2018, 72, 221-226. (https://doi.org/10.2533/chimia.2018.221)
  11. Burger, M.; Schwarz, G.; Gundlach-Graham, A.; Käser, D.; Hattendorf, B.; Günther, D., Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry. 2017, 32(10), 1946-1959. (http://dx.doi.org/10.1039/c7ja00236j)
  12. Hendriks, L.; Gundlach-Graham, A.*; Hattendorf, B.; Gunther, D., Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. Journal of Analytical Atomic Spectrometry. 32, 548 – 561. (http://dx.doi.org/10.1039/c6ja00400h)
  13. Praetorius, A.; Gundlach-Graham, A.; Goldberg, E. S.; Fabienke, W.; Navratilova, J.; Gondikas, A.; Kagi, R.; Gunther, D.; Hofmann, T.; von der Kammer, F., Single-Particle Multi-Element Fingerprinting (SPMEF) Using Inductively Coupled Plasma Time of Flight Mass Spectrometry (ICP-TOFMS) to Identify Engineered Nanoparticles against the Elevated Natural Background in Soils. Environmental Science: Nano. 2017, 4(2), 307-314. (http://dx.doi.org/10.1039/C6EN00455E)
  14. Schwarz, G.; Burger, M.; Guex, K.; Gundlach-Graham, A.; Käser, D.; Koch, J.; Velicsanyi, P.; Wu, C.-C.; Günther, D.; Hattendorf, B., Demonstrating Rapid Qualitative Elemental Analyses of Participant-Supplied Objects at a Public Outreach Event. Journal of Chemical Education2016, 93(10), 1749-1753. (http://dx.doi.org/10.1021/acs.jchemed.6b00391)
  15. Dennis, E. A.; Gundlach-Graham, A. W.; Ray, S. J.; Enke, C. G.; Hieftje, G. M., Distance-of-Flight Mass Spectrometry: What, Why, and How? Journal of The American Society for Mass Spectrometry. 201627(11), 1772-1786. (http://dx.doi.org/10.1007/s13361-016-1458-1)
  16. Gundlach-Graham, A.*; Günther, D., Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Analytical and Bioanalytical Chemistry 2016, 1-9. (http://dx.doi.org/10.1007/s00216-015-9251-8)
  17. Gundlach-Graham, A.; Enke, C. G., The Effect of Response Factor Variations on the Response Distribution of Complex Mixtures. European J. Mass Spectrom. 201521 (3), 471-479. (http://dx.doi.org/10.1255/ejms.1369)
  18. Gundlach-Graham, A.*; Burger, M.; Wang, H.A.O; Allner, S.; Schwarz, G.; Gyr, L.; Grolimund, D.; Hattendorf, B.; Günther, D. High-Speed, High-Resolution, Multi-Elemental LA-ICP-TOFMS Imaging: Part I.  Instrumentation and Two-Dimensional Imaging of Geological Samples.  Analytical Chemistry201587 (16), 8250-8267. (http://dx.doi.org/10.1021/acs.analchem.5b01196)
  19. Burger, M.; Gundlach-Graham, A.*; Wang, H.A.O; Allner, S.; Schwarz, G.; Gyr, L.; Grolimund, D.; Hattendorf, B.; Günther, D. High-Speed, High-Resolution, Multi-elemental LA-ICP-TOFMS Imaging: Part II. Critical Evaluation of Quantitative Three-Dimensional Imaging of Major, Minor, and Trace Elements in Geological Samples.  Analytical Chemistry201587 (16), 8259-8267. (http://dx.doi.org/10.1021/acs.analchem.5b01977)
  20. Dennis, E.; Ray, S.; Enke, C.; Gundlach-Graham, A.; Barinaga, C.; Koppenaal, D.; Hieftje, G., Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source. Am. Soc. Mass Spectrom. 2015, 1-9. (http://dx.doi.org/10.1007/s13361-015-1295-7)
  21. Gundlach-Graham, A.; Dennis, E. A.; Ray, S. J.; Enke, C. G.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry. Anal. At. Spectrom. 2015, 30 (1), 139-147. (http://dx.doi.org/10.1039/c4ja00231h)
  22. Dennis, E.; Gundlach-Graham, A.; Ray, S.; Enke, C.; Barinaga, C.; Koppenaal, D.; Hieftje, G., Zoom-TOFMS: addition of a constant-momentum-acceleration “zoom” mode to time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry 2014, 406 (29), 7419-7430. (http://dx.doi.org/10.1007/s00216-014-7875-8)
  23. Gundlach-Graham, A.; Dennis, E.; Ray, S.; Enke, C.; Barinaga, C.; Koppenaal, D.; Hieftje, G., Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. Am. Soc. Mass Spectrom. 2013, 24 (11), 1736-1744. (http://dx.doi.org/10.1007/s13361-013-0718-6)
  24. Dennis, E. A.; Ray, S. J.; Gundlach-Graham, A. W.; Enke, C. G.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., Constant-Momentum Acceleration Time-of-Flight Mass Spectrometry with Energy Focusing. Am. Soc. Mass Spectrom. 2013, 24 (12), 1853-1861. (http://dx.doi.org/10.1007/s13361-013-0723-9)
  25. Gundlach-Graham, A. W; Dennis, E. A.; Ray, S. J.; Enke, C. G.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., First Inductively Coupled Plasma–Distance-of-Flight Mass Spectrometer: Instrument Performance with a Microchannel Plate-Phosphor Imaging Detector. Anal. At. Spectrom. 2013, 1385-1395. (http://dx.doi.org/10.1039/c3ja50122a)
  26. Gundlach–Graham, A.; Dennis, E.; Enke, C.; Ray, S.; Carado, A.; Barinaga, C.; Koppenaal, D.; Hieftje, G., How Constant Momentum Acceleration Decouples Energy and Space Focusing in Distance–of–Flight and Time–of–Flight Mass Spectrometries. Am. Soc. Mass Spectrom201324 (5), 690-700. (http://dx.doi.org/10.1007/s13361-013-0587-z)
  27. Gundlach-Graham, A. W.; Dennis, E. A.; Ray, S. J.; Enke, C. G.; Carado, A. J.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., Extension of the Focusable Mass range in Distance-of-Flight Mass Spectrometry with Multiple Detectors. Rapid Commun. Mass Spectrom. 2012, 26 (21), 2526-2534. (http://dx.doi.org/10.1002/rcm.6379)
  28. Enke, C. G.; Ray, S. J.; Graham, A. W.; Dennis, E. A.; Hieftje, G. M.; Carado, A. J.; Barinaga, C. J.; Koppenaal, D. W., Distance-of-Flight Mass Spectrometry: A New Paradigm for Mass Separation and Detection. Rev. Analytical Chemistry 2012, 5 (1), 487-504. (http://dx.doi.org/10.1146/annurev-anchem-091411-121050)
  29. Graham, A. W. G.; Ray, S. J.; Enke, C. G.; Felton, J. A.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., Resolution and Mass Range Performance in Distance-of-Flight Mass Spectrometry with a Multichannel Focal-Plane Camera Detector. Analytical Chemistry 2011, 83 (22), 8552-8559. (http://dx.doi.org/10.1021/ac201876y)
  30. Graham, A. W. G.; Ray, S. J.; Enke, C. G.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., First Distance-of-Flight Instrument: Opening a New Paradigm in Mass Spectrometry. Am. Soc. Mass. Spectrom. 2011, 22 (1), 110-117. (http://dx.doi.org/10.1007/s13361-010-0005-8)